Liquid Argon Time Projection ChambersR&D Towards Kiloton Class Detectors

Mitch Soderberg Yale University

Big Questions in Neutrinos

- Observe $v_{\mu} \rightarrow v_{e}$ transitions, measure θ_{13} $\sin^{2}(2\theta_{13}) < 0.19$ (90%CL)
- Determine Mass Hierarchy

• Measure the CP-violating phase, δ_{CP}

Liquid Argon TPC Idea

TPC = Time Projection Chamber

- •Interactions in TPC produce ionization particles which drift along electric field lines to readout planes.
- •Scintillation light also present, can be collected by PMTs and triggered on.
- •Knowledge of drift speed, and T_0 of events, can be used to reconstruct interaction.

Train of pulses, with slight time offsets due to different drift lengths.

$$(t - T_0) = v_{drift} \cdot (x - x_{wire})$$

LAr TPCs: Advantages

- •Excellent π^0 , electron discrimination
- •80% signal (CC v_e) efficiency, \approx 100% background (NC π^0) rejection
- •Particle ID from dE/dx (proton/pion/kaon separation)
- Beautiful events:

ICARUS Event

LAr TPCs (U.S.): Past/Present/Future

* - arXiv:0708.0875v1 - "The Yale LAr TPC"

ArgoNeuT

- Collaboration of Fermilab, INFN, Michigan State, UT Austin, Yale
- Small (~175 liter TPC) LArTPC in Fermilab's NuMl beamline.
- Real neutrino events in an LArTPC.
- Invaluable learning experience before attempting larger detector.

ArgoNeuT in front of MINOS

Cryostat

ArgoNeuT Cryogenics

Bathtub Containment

- •Recirculation System will have two filters to allow for continuous operation.
- •Complete volume exchange every ~4 days.
- •Many safety features to minimize chances of argon escaping into tunnel.

ArgoNeuT Detector

- •TPC has 480 channels of readout spread over two planes.
- Collection/Induction wires at 60° angles.
- Max. drift distance is ~50cm.
- •2048 samples over 400µs

MicroBooNE

- Next generation TPC which will sit in Booster neutrino beam at Fermilab.
- ●170 ton cryostat with ~70 ton fiducial volume TPC
- MicroBooNE can study MiniBooNE low-energy excess, as well as numerous cross-section measurements.
- Many R&D aspects which will benefit in design of very large detectors

LAr5/DUSEL

Conclusion

- LAr TPCs are an exciting technology for massive next generation neutrino detectors.
- ArgoNeuT will be a great proving ground for LAr TPCs in a real beam environment.
- MicroBooNE can do timely physics, such as studying the MiniBooNE low-energy excess, and R&D.
- Massive (>5kTon) LAr TPCs could someday answer the major questions of neutrino oscillation physics.

Noble Liquids

- •lonization and scintillation light used for detection (transparency to own scintillation).
- •lonization electrons can be drifted over long distances in these liquids.
- Very good dielectric properties allow high-voltages in detector.
- •Argon is cheap and easy to obtain (1% of atmosphere).

	Water	6	Ne	Ar	Kr	Xe
Boiling Point [K] @ latm	373	4.2	27.1	87.3	120.0	165.0
Density [g/cm³]	1	0.125	1.2	1.4	2.4	3.0
Radiation Length [cm]	36.1	755.2	24.0	14.0	4.9	2.8
Scintillation [γ/MeV]	-	19,000	30,000	40,000	25,000	42,000
dE/dx [MeV/cm]	1.9		1.4	2.1	3.0	3.8
Scintillation λ [nm]		80	78	128	150	175

LAr TPCs can be scaled to massive sizes.